李金铠,孙合草,张瑾.基于SML指数的环境回弹效应分析:模型与测算[J].中国环境管理,2021,13(2):102-109,79.
LI Jinkai,SUN Hecao,ZHANG Jin.Analysis of Environmental Rebound Effect Based on the SML Index: Model and Measurement[J].Chinese Journal of Environmental Management,2021,13(2):102-109,79.
基于SML指数的环境回弹效应分析:模型与测算
Analysis of Environmental Rebound Effect Based on the SML Index: Model and Measurement
DOI:10.16868/j.cnki.1674-6252.2021.02.102
中文关键词:  环境回弹效应  SML指数  时空分异
英文关键词:environmental rebound effect  SML index  spatio-temporal differentiation
基金项目:国家社会科学基金一般项目“基于能源革命的中国电力市场改革与制度设计研究”(20BJL034);国家自然科学基金青年科学基金项目“政策文本数据的实体关系抽取方法及多领域政策协同演化研究”(72001191);教育部人文社会科学青年基金项目“基于价格改革的生物燃料乙醇市场化推进与发展研究”(18YJC790216);河南省自然科学基金青年科学基金项目“我国能源领域政策文本与科研文献的知识抽取及协同演化研究”(202300410442)。
作者单位E-mail
李金铠 郑州大学能源环境经济研究中心, 河南郑州 450000
清华大学公共管理学院, 北京 100871 
 
孙合草 郑州大学能源环境经济研究中心, 河南郑州 450000
郑州大学商学院, 河南郑州 450000 
 
张瑾 郑州大学能源环境经济研究中心, 河南郑州 450000
清华大学公共管理学院, 北京 100871 
zhangj17@mails.tsinghua.edu.cn 
摘要点击次数: 1567
全文下载次数: 1148
中文摘要:
      本文通过搭建环境回弹效应理论框架,采用熵权法构造各地区综合环境污染指数,利用Sequential Malmquist-Luenberger指数全要素生产率模型测度技术进步对经济增长的贡献率,定量评估了1999—2017年我国30个省份的环境回弹效应,识别了环境回弹效应时序演变和区域差异,并进一步利用空间分析技术探究环境回弹效应的空间分布特征。研究表明:样本期内各省份环境回弹效应均值集中在-13.23% ~ 29.63%,全国平均环境回弹效应为10.42%,实际减污率仅为65.74%;时序特征上,环境回弹效应与技术进步有部分相关性,但存在滞后作用,经济发展水平和技术溢出效应是主要的异质性来源;空间特征上,环境回弹效应的区域差异显著,但具有空间相关性,地理因素在解释环境回弹效应的影响因素中不容忽视;全局自相关检验表明2006—2011年各省份环境回弹效应呈显著的正自相关,空间集聚特征明显。建议进一步挖掘环境降污空间,加快经济增长与环境污染的脱钩,关注区域协同减排,是改善污染治理的有效措施。
英文摘要:
      By building theoretical framework of environment rebound effect, this paper used the entropy method to construct regional comprehensive environmental pollution index, estimated the contribution rate of technological progress on economic growth with the Sequential Malmquist-Luenberger total factor productivity (SML) index model, quantitatively evaluated the environmental rebound effects of 30 provinces in China from 1999 to 2017, identified the temporal evolution and regional differences of environmental rebound effects, and further explored the spatial distribution characteristics of environmental rebound effects using spatial analysis techniques. The results showed that the mean environmental rebound effect of all provinces in China was between -13.23%-29.63%, the national average environmental rebound effect was 10.42%, and the actual pollution reduction rate was only 65.74%. In terms of temporal characteristics, the environmental rebound effect was partially correlated with technological progress, but there was a lagging effect. Economic development level and technological spillover effect were the main sources of heterogeneity. In terms of spatial characteristics, the regional differences of environmental rebound effect were significant, but there was a spatial correlation. Geographical factors can not be ignored in the explanation of environmental rebound effect. The global autocorrelation test showed that the environmental rebound effect of China's provinces presented a significant positive autocorrelation from 2006 to 2011, and the spatial agglomeration characteristics were obvious. The effective measures to improve pollution control are to further excavate the space of environmental pollution reduction, accelerate the decoupling of economic growth and environmental pollution, and pay attention to regional cooperative emission reduction.
HTML  查看全文  查看/发表评论  下载PDF阅读器
关闭