炼油集群多流协同降碳减污管理系统建设方法研究
Research on the Construction Methodology of a Multi-Flow Synergistic Management System to Mitigate Carbon Emissions and Pollution for Refinery Clusters
DOI:
中文关键词:  炼油集群  物质流能量流  降碳减污  碳量流  价值流
英文关键词:refinery cluster  material and energy flows  mitigation of carbon emissions and pollution  carbon flow  value flow
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位邮编
高晗博 清华大学环境学院 100084
刘英洁 清华大学环境学院 
臧娜 清华大学环境学院 
赵佳玲 清华大学环境学院 
田金平 清华大学环境学院 
陈吕军* 清华大学环境学院 100084
摘要点击次数: 11
全文下载次数: 0
中文摘要:
      炼油是典型的流程型工业且集群化发展特征明显。炼油集群内产品网络与反应流程非常复杂,生产装置具有多投入多产出、物质能量耦合交互的突出特征,同时还面临降碳减污协同的巨大挑战。研究集成物质流-能量流-碳量流-价值流分析方法,提出了炼油集群多流协同降碳减污管理系统建设方法,运用脱钩指数开展纵向跟踪与横向对标,推进炼油集群的能耗与碳污排放和其经济增长之间从相对脱钩向绝对脱钩的转变。研究选取国内大型综合炼油集群阐明系统建设的技术路径,建议多流协同降碳减污管理系统应涵盖数据资源采集、多源数据分析、管理决策支撑等基本功能,实现炼油集群、产业链网、主要企业、关键工段等宏观、中观、微观多层级数据集成与平台展示功能。在能流与碳流等主要模块的构建过程中,应重点识别蒸汽供应网络和物质隔墙供应等企业内部与企业之间的物质能量代谢路径,避免原油等用作能源或原材料时所关联的不同能源消耗与工业过程碳排放的遗漏或重复计算。系统平台的多流协同分析单元宜基于模块化嵌套设计可拓展接口,实现多部门管理数据的协调兼容与多源异构动态数据的实时管理。
英文摘要:
      As a typical process-oriented industry, refinery clusters feature complex product networks and reaction processes. Their production equipment is characterized by multiple input-output and coupled interaction of material and energy flows, facing big challenges in carbon mitigation and pollution reduction. Through integration of material, energy, carbon and value flows, this study establishes construction methods for a multi-flow synergistic management system to mitigate carbon emissions and pollution from refinery clusters. By applying longitudinal tracking and horizontal benchmarking of the decoupling index, the study promotes the transition of refinery clusters from relative decoupling to absolute decoupling between energy consumption/carbon emissions/pollution and economic growth. A large-scale comprehensive refinery cluster in China is then selected to illustrate the technical path of system construction. The multi-flow synergistic management system should encompass basic functions such as data resource collection, multi-source data analysis, and management decision support, integrating and displaying multi-level data at macro, meso, and micro levels—including refinery clusters, industrial chain networks, key enterprises, and critical process units—on a unified platform. During the construction of main modules including energy flow and carbon flow, the identification of paths of material and energy metabolism within and between companies should be emphasized, such as steam supply networks and material partition supply. In addition, missing or double counting carbon emissions from energy consumption or industrial processes should be avoided when crude oil is both used as energy and raw materials. The platform’s multi-flow coordinated units are recommended to be built based on modular nesting and expandable interfaces. This supports harmonized data management across bureaus and real-time handling of heterogeneous dynamic data from various sources.
HTML    查看/发表评论  下载PDF阅读器
关闭